Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention

Systematic Review and Meta-analysis

Goran Bjelakovic, MD, DrMedSci Dimitrinka Nikolova, MA Lise Lotte Gluud, MD, DrMedSci Rosa G. Simonetti, MD Christian Gluud, MD, DrMedSci

XIDATIVE STRESS IS IMPLIcated in most human diseases.^{1,2} Antioxidants may decrease the oxidative damage and its alleged harmful effects.³⁻⁶ Many people are taking antioxidant supplements, believing to improve their health and prevent diseases.⁷⁻¹⁰ Whether antioxidant supplements are beneficial or harmful is uncertain.¹¹⁻¹⁵ Many primary or secondary prevention trials of antioxidant supplements have been conducted to prevent several diseases.

We found that antioxidant supplements, with the potential exception of selenium, were without significant effects on gastrointestinal cancers and increased all-cause mortality.14,15 We did not examine the effect of antioxidant supplements on all-cause mortality in all randomized prevention trials.¹⁶ Our aim with the present systematic review was to analyze the effects of antioxidant supplements (beta carotene, vitamins A and E, vitamin C [ascorbic acid], and selenium) on all-cause mortality of adults included in primary and secondary prevention trials.

Context Antioxidant supplements are used for prevention of several diseases.

Objective To assess the effect of antioxidant supplements on mortality in randomized primary and secondary prevention trials.

Data Sources and Trial Selection We searched electronic databases and bibliographies published by October 2005. All randomized trials involving adults comparing beta carotene, vitamin A, vitamin C (ascorbic acid), vitamin E, and selenium either singly or combined vs placebo or vs no intervention were included in our analysis. Randomization, blinding, and follow-up were considered markers of bias in the included trials. The effect of antioxidant supplements on all-cause mortality was analyzed with random-effects meta-analyses and reported as relative risk (RR) with 95% confidence intervals (CIs). Meta-regression was used to assess the effect of covariates across the trials.

Data Extraction We included 68 randomized trials with 232 606 participants (385 publications).

Data Synthesis When all low- and high-bias risk trials of antioxidant supplements were pooled together there was no significant effect on mortality (RR, 1.02; 95% CI, 0.98-1.06). Multivariate meta-regression analyses showed that low-bias risk trials (RR, 1.16; 95% CI, 1.05-1.29) and selenium (RR, 0.998; 95% CI, 0.997-0.9995) were significantly associated with mortality. In 47 low-bias trials with 180 938 participants, the antioxidant supplements significantly increased mortality (RR, 1.05; 95% CI, 1.02-1.08). In low-bias risk trials, after exclusion of selenium trials, beta carotene (RR, 1.07; 95% CI, 1.02-1.11), vitamin A (RR, 1.16; 95% CI, 1.10-1.24), and vitamin E (RR, 1.04; 95% CI, 1.01-1.07), singly or combined, significantly increased mortality. Vitamin C and selenium had no significant effect on mortality.

Conclusions Treatment with beta carotene, vitamin A, and vitamin E may increase mortality. The potential roles of vitamin C and selenium on mortality need further study. *JAMA. 2007;297:842-857* www.jama.com

METHODS

The present review follows the Cochrane Collaboration method¹⁷ and is based on the principles of our peer-reviewed protocol and review on antioxidant supplements for gastrointestinal cancer prevention.^{14,15,18,19} We included all primary and secondary prevention trials in adults randomized to receive beta caroAuthor Affiliations: The Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Center for Clinical Intervention Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (Drs Bjelakovic, L. L. Gluud, Simonetti, and C. Gluud and Ms Nikolova); Department of Internal Medicine, Gastroenterology and Hepatology, University of Nis, Nis, Serbia (Dr Bjelakovic); and Divisione di Medicina, Ospedale V. Cervello, Palermo, Italy (Dr Simonetti). Corresponding Author: Goran Bjelakovic, MD, DrMedSci, University of Nis, Department of Internal Medicine, Boulevard Dr Zorana Djindjica 81, 18000 Nis, Serbia (goranb@junis.ni.ac.yu).

842 JAMA, February 28, 2007-Vol 297, No. 8 (Reprinted)

tene, vitamin A, vitamin C, vitamin E, or selenium vs placebo or no intervention. Parallel-group randomized trials and the first period of crossover randomized trials were included.¹⁷ Trials including general or healthy populations were classified as primary prevention. Trials including participants with specific disease were classified as secondary prevention. We excluded tertiary prevention (treatment) trials, like trials on acute, infectious, or malignant diseases except nonmelanoma skin cancer.

We included antioxidant supplements at any dose, duration, and route of administration. We analyzed the antioxidants administered singly, in combination with other antioxidants, or with other vitamins or trace elements. Trials with collateral interventions were included if the interventions were used equally in the trial groups. Subgroup analyses without high-bias risk trials and selenium trials were preconceived. Our outcome measure was all-cause mortality at maximum follow-up.

Data Sources

We searched The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005).²⁰ We scanned bibliographies of relevant articles for additional trials.

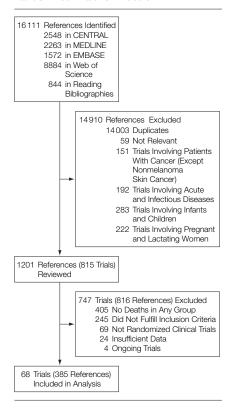
Data Extraction

Two of the 3 authors (G.B. and D.N., and R.G.S.) independently assessed trial eligibility. Excluded trials were listed with the reasons for exclusion. Disagreement was resolved by discussion or in consultation with a third author (C.G.). We contacted authors of the trials for missing information.

From each trial we recorded first author; country of origin, country income category (low, middle, high)²¹; number of participants; characteristics of participants: age range (mean or median) and sex ratio; participation rate; dropout rate; trial design (parallel, factorial, or crossover); type of antioxidant; dose; duration of supplementation; duration of follow-up (ie, treatment duration plus posttreatment follow-up); and cointerventions. We extracted the date, location, sponsor of the trial, and the publication status.

Due to the risk of overestimating intervention effects, analyses were stratified according to the risk of bias (methodological quality).^{14,15,18,19,22-24} Trials with adequate generation of the allocation sequence, adequate allocation concealment, adequate blinding, and adequate follow-up were considered low-bias risk trials (high methodological quality).²⁴ Trials with one or more unclear or inadequate quality components were classified as high-bias risk trials (low methodological quality).²⁴ Generation of the allocation sequence was considered adequate if the allocation sequence was generated by a computer or random-number table, or similar; allocation concealment was considered adequate if concealed up to the point of treatment by central randomization, sealed envelopes, or similar; blinding was considered adequate if the trial was described as doubleblind and using identical placebo; follow-up was considered adequate if the numbers and reasons for dropouts and withdrawals in all intervention groups were described or if it was specified that there were no dropouts or withdrawals. Bias risk was assessed without blinding of 2 authors (G.B. and D.N. or R.G.S.). Consensus was reached through discussion or arbitration by a third author (C.G. or L.L.G.) before data entry. We have found high interrater agreement between blinded and unblinded assessments and also between 2 independent assessors.²⁴

Statistical Analyses


We used The Cochrane Collaboration software (RevMan Analyses 1.0; www .cochrane.org), STATA 8.2 (STATA Corp, College Station, Tex), Sigma Stat 3.0 (SPSS Inc, Chicago, Ill), and Stats-Direct (StatsDirect Ltd, Altrincham, England). We analyzed the data with a random-effects model,²⁵ calculating the relative risk (RR) with 95% confidence intervals (CIs). To account for 0 cells in the 2×2 tables, we calculated the RR with 3 different continuity corrections (0.5; 0.1; 0.01).^{26,27} We did not include trials with 0 events in both intervention groups.^{27,28} Because the number of such trials was large, we performed exploratory analysis adding an imagined trial with 1 death and 20 000 participants in each group.

We used the STATA metareg command for the random-effects metaregression to assess which covariates influenced the intervention effect across trials.²⁹ The included covariates were bias risk, type and dose of supplement, single or combined supplement regimen, duration of supplementation, and primary or secondary prevention. Univariate and multivariate analyses including all covariates were performed. Results are presented with regression coefficients and 95% CI.

All analyses followed the intentionto-treat principle. For trials with factorial design, we based our results on at-margins analysis,³⁰ comparing all groups that received antioxidant supplements with groups that did not. To determine the effect of a single antioxidant, we performed inside-thetable analysis³⁰ in which we compared the group taking a single antioxidant with the group taking placebo or receiving no intervention. In trials with more than 2 groups assessing additional therapy, we compared only groups receiving antioxidants, placebo, or no intervention.

We assessed heterogeneity with I² that describes the percentage of total variation across trials due to heterogeneity rather than chance.^{17,31} I² can be calculated as I²=100% × (Qv - df)/Q, where Q is Cochran's heterogeneity statistics and df the degrees of freedom. Negative values of I² are put equal to 0, so I² lies between 0% (no heterogeneity) and 100% (maximal heterogeneity).³¹ We compared the estimated treatment effects in trials with a lowor high-risk of bias with test of interaction.³² We performed adjusted-rank

Figure 1. Flow Diagram of Identification of Randomized Trials for Inclusion

correlation³³ and regression-asymmetry tests³⁴ for detection of bias.

RESULTS

Database searches yielded 16 111 references. Exclusion of duplicates and irrelevant references left 1201 references describing 815 trials. To obtain additional information we wrote to authors of eligible trials. Seventy authors responded. We excluded 816 references (747 trials) due to the following: mortality was 0 in both study groups (n=405 trials, including about 40 000 participants [http://ctu.rh.dk]); did not fulfill inclusion criteria (n=245); was not a randomized trial (n=69); insufficient data (n=24); or still ongoing trial (n=4). We included 385 references describing 68 randomized trials fulfilling our inclusion criteria and able to provide data for our analyses³⁵⁻¹⁰² (FIGURE 1 [http://ctu .rh.dk]). This corresponds to a median of 6 references per included trial (range, 1-44). Forty trials used parallelgroup design, 26 factorial design (23

trials 2×2 ; 2 trials $2 \times 2 \times 2$; 1 trial half replicate of $2 \times 2 \times 2 \times 2$), and 2 cross-over design.

A total of 232 606 participants were randomly assigned in the 68 trials. The number of participants in each trial ranged from 24 to 39 876 (TABLE 1 and TABLE 2). The mean age was 62 years (range, 18-103 years). The mean proportion of women was 44.5% in the 63 trials reporting sex.

Twenty-one trials were primary prevention trials including 164 439 healthy participants; 47 trials were secondary prevention trials including 68 167 participants with gastrointestinal (n=11), cardiovascular (n=9), neurological (n=6), ocular (n=5), dermatological (n=5), rheumatoid (n=2), renal and cardiovascular (n=1), endocrinological (n=1), or unspecified (n=7) diseases. Main outcome measures in the primary prevention trials were cancer and mortality (cause specific and all cause), and in the secondary prevention trials they were progression of disease and mortality (cause specific and all cause; TABLE 3 and TABLE 4).

All antioxidant supplements were administered orally. The dose and regimen of the antioxidant supplements were: beta carotene 1.2 to 50.0 mg (mean, 17.8 mg), vitamin A 1333 to 200 000 IU (mean, 20 219 IU), vitamin C 60 to 2000 mg (mean, 488 mg), vitamin E 10 to 5000 IU (mean, 569 IU), and selenium 20 to 200 µg (mean 99 µg) daily or on alternate days for 28 days to 12 years (mean 2.7 years). In one trial⁴⁰ antioxidants were applied in a single dose and participants were followed up for 3 months thereafter. The mean duration of follow-up in all trials was 3.3 years (range, 28 days-14.1 years).

Beta carotene was tested in 25 trials, vitamin A in 16, vitamin C in 34, vitamin E in 55, and selenium in 21. Beta carotene was tested singly in 6 trials, vitamin A in 2, vitamin E in 24, and vitamin C and selenium in 3 trials each. The antioxidant supplements were given in the following combinations: beta carotene and vitamin A; beta carotene and vitamin E; bet

vitamin C; vitamin A and vitamin C; vitamin C and vitamin E; vitamin E and selenium; selenium and zinc; beta carotene, vitamin C, and vitamin E; beta carotene, vitamin C, vitamin E, and selenium; beta carotene, vitamin C, vitamin E, selenium, and zinc; vitamin A, vitamin C, vitamin E, selenium, and zinc; vitamin A, vitamin C, vitamin E, selenium, methionine, and ubiquinone. In 11 trials, participants were supplemented with different mixtures of antioxidants as well as with vitamins and minerals without antioxidant properties.*

Sixty-three trials used placebo and 5 trials^{43,48,58,69,82} used no intervention in the control group. In 9 trials† the active and placebo (control) groups were supplemented with vitamins and minerals (with or without antioxidant properties). In 6 of the trials, the supplementation was with vitamin E 4 IU,^{46,89} vitamin A 1000 IU⁴⁰; vitamin C 20 and 50 mg48,81; riboflavin 10 mg³⁵; or niacin 100 mg.⁶⁵ In the trials with factorial or parallelgroup design, the additional interventions tested were multivitamins and minerals (zinc, copper, chromium); ubiquinone; L-methionine; omega-3 polyunsaturated fatty acids; citrus bioflavonoid complex; quercetin, bilberry extract, rutin (bioflavonoids); taurine; N-acetyl cysteine; L-glutathione; aged garlic; deprenylselegiline (selective monoamine oxidase B inhibitor); donepezil (acetylcholinesterase inhibitor); riluzole (modulator of glutamatergic neurotransmission); amoxicillin, metronidazole (antibiotics); bismuth subsalicylate; omeprazole (proton-pump inhibitor); aspirin; simvastatin (cholesterol-lowering drug); celecoxib (inhibitor of cyclooxygenase), and ramipril (angiotensin-converting enzyme inhibitor).

In 54 trials (79.4%), the antioxidants were provided at no cost from pharmaceutical companies. In the rest

^{*}References 39, 41, 42, 45, 51, 52, 72, 84, 91, 92, 101. +References 35, 40, 46, 48, 65, 81, 89, 97, 99.

of the trials funding was not reported. The trials were conducted in Europe, North and South America, Asia, and Australia. Six trials came from lowermiddle-income countries^{41,42,47,62,67,68} and 62 trials from high-income countries.

Methodological Quality of Included Trials

Forty-seven of the 68 trials (69.1%) had low-bias risk, ie, had adequate genera-

tion of the allocation sequence, adequate allocation concealment, blinding, and follow-up.²⁴ The remaining trials had one or more inadequate components.

All Randomized Trials

The pooled effect of all supplements vs placebo or no intervention in all randomized trials was not significant (RR, 1.02; 95% CI, 0.98-1.06). Heterogeneity was not significant (I^2 =18.6%, P=.10). Adjusted-rank correlation test (P=.08), but not the regression asymmetry test (P=.26), suggested bias among the trials. Exploratory analysis adding an imagined trial with one death and 20 000 participants in each study group had no noticeable effect on the result.

Univariate meta-regression analyses revealed significant influences of dose of beta carotene (RR, 1.004; 95% CI, 1.001-1.007; P=.012), dose of vitamin A (RR, 1.000006; 95% CI,

								Antio	kidant Suppl	ement	
					Duration of		Beta				
Source	Design	No. of Participants	Women, %	Mean Age, y	Supplement Treatment, y	Follow-up, y	Carotene, mg	Vitamin A, IU	Vitamin C, mg	Vitamin E, IU	Selenium, µg
Gillilan et al, ³⁵ 1977	Crossover	52	NA	57	0.5	0.5				1600	
McKeown- Eyssen et al, ³⁶ 1988	Parallel	185	32	58	2	2			400	400	
Penn et al, ³⁸ 1991	Parallel	30	80	84	0.077	0.077		8000	100	50	
Chandra, ³⁹ 1992	Parallel	96	55	74	1	1	16	1333	80	44	20
Blot et al, ⁴¹ 1993	¹ ⁄₂ (2 × 2 × 2 × 2)	29 584	55	NA	5.25	5.25	15	5000	120	33	50
Wenzel et al, ⁴³ 1993	Parallel	56	20	48	0.082	0.082	12		180	894	200
Takamatsu et al, ⁴⁶ 1995	Parallel	147	60	47	6	6				136	
de la Maza et al, ⁴⁷ 1995	Parallel	74	15	50	1	1				500	
ter Riet et al, ⁴⁸ 1995	2×2	88	NA	NA	0.23	0.23			1000		
Hogarth et al, ⁵¹ 1996	2×2	106	56	83	0.083	0.083		8000	500		
Girodon et al, ⁵⁴ 1997	2×2	81	75	84	2	2	6		120	15	100
Sano et al, ⁵⁶ 1997	2×2	341	65	73	2	2				2000	
Bonelli et al, ⁵⁷ 1998	Parallel	304	NA	NA	5	5		6000	180	30	200
GISSI,58 1999	2 × 2	11 324	15	59	3.5	3.5				330	
Stevic et al,67 2001	Parallel	28	25	57	1	1				1200	31.5
You et al, ⁶⁸ 2001	$2 \times 2 \times 2$	3411	49	NA	3.25	3.25	15		500	200	75
de Gaetano, ⁶⁹ 2001	2×2	4495	57	64	3.6	3.6				330	
de Waart et al, ⁷⁰ 2001	Parallel	218	0	60	1.8	1.8				400	
Sasazuki et al, ⁸¹ 2003	2 × 2	439	65	57	5	5	15		500		
Takagi et al, ⁸² 2003	Parallel	93	55	63	5	5				600	
Petersen et al, ⁹⁹ 2005	Parallel	516	46	73	3	3				2000	

Abbreviation: NA, not available. Blank cells indicate that the supplement was not part of the study.

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, February 28, 2007-Vol 297, No. 8 845

Table 2. Characteristics of Included Trials With Low Risk of Bias

	Design	No. of Participants	Women, %	, Mean Age, y	Duration of Supplement Treatment, y	Follow-up, y	Antioxidant Supplement				
Source							Beta Carotene, mg	Vitamin A, IU	Vitamin C, mg	Vitamin E, IU	Selenium, µg
Greenberg et al, ³⁷ 1990	Parallel	1805	30	NA	5	5	50				10
Murphy et al, ⁴⁰ 1992	Parallel	109	NA	NA	0.003	0.25		200 000			
Li et al, ⁴² 1993	Parallel	3318	56	54	6	6	15	10 000	180	60	50
Greenberg et al, ⁴⁴ 1994	2 × 2	864	21	61	4	4	25		1000	440	
Pike and Chandra, ⁴⁵ 1995	Parallel	47	72	69	1	1		2666	90	45	
Clark et al, ⁴⁹ 1996	Parallel	1312	25	63	4.5	7.4					200
Hennekens et al, ⁵⁰ 1996	2×2	22 07 1	0	53	12	12.9	25				
Richer, ⁵² 1996	Parallel	71	7	72	1.5	1.5		20 000	750	200	50
Stephens et al, ⁵³ 1996	Parallel	2002	16	62	1.4	1.4				600	
Moon et al,55 1997	Parallel	2297	30	63	3.8	3.8		25 000			
Girodon et al, ⁵⁹ 1999	2 × 2	725	74	84	2	2	6		120	16.5	100
Green et al, ⁶⁰ 1999	2 × 2	1621	56	49	4.5	4.5	30				
Boaz et al, ⁶¹ 2000	Parallel	196	31	65	1.42	1.42				800	
Correa et al, ⁶² 2000	$2 \times 2 \times 2$	976	54	51	6	6	30		2000		
Jacobson et al, ⁶³ 2000	Parallel	112	42	42	0.5	0.5	12		500	400	
AREDS, ⁶⁴ 2001	2 × 2	4757	56	68	6.3	6.3	15		500	400	
Brown et al, ⁶⁵ 2001	2 × 2	160	13	53	3	3	25		1000	800	100
Desnuelle et al, ⁶⁶ 2001	Parallel	288	45	64	1	1				500	
Chylack et al, ⁷¹ 2002	Parallel	297	59	68	3	3	18		750	660	
Graat et al, ⁷² 2002	2×2	652	50	NA	1	1	1.2	2000	60	272	25
Heart Protection Study, ⁷³ 2002	2 × 2	20 536	25	NA	5	5	20		250	660	
Hodis et al, ⁷⁴ 2002	Parallel	353	52	56	3	3				400	
Waters et al, ⁷⁵ 2002	2×2	423	100	65	3	3			1000	800	
White et al, ⁷⁶ 2002	Parallel	100	42	63	0.23	0.23			1000	223	
Wluka et al, ⁷⁷ 2002	Parallel	136	45	64	2	2				500	
Collins et al, ⁷⁸ 2003	2×2	52	2	67	0.5	2.5				400	
Prince et al, ⁷⁹ 2003	Crossover	61	92	58	0.25	0.25	3		150	74.5	75
Salonen et al, ⁸⁰ 2003	2 × 2	520	51	NA	6	6			250	272	
Virtamo et al ⁸³ 2003	2×2	29 133	0	57	6.1	14.1	20			50	

846 JAMA, February 28, 2007—Vol 297, No. 8 (Reprinted)

			Women, %	Mean Age, y	Duration of Supplement Treatment, y		Antioxidant Supplement				
Source	Design	No. of Participants				Follow-up, y	Beta Carotene, mg	Vitamin A, IU	Vitamin C, mg	Vitamin E, IU	Selenium µg
Allsup et al, ⁸⁴ 2004	Parallel	164	63	83	0.15	0.5		2666	120	60	60
Goodman et al, ⁸⁵ 2004	Parallel	18314	34	58	4	10	30	25000			
Hercberg et al, ⁸⁶ 2004	Parallel	13017	61	49	7.54	7.54	6		120	33	100
Manuel-y- Keenoy et al, ⁸⁷ 2004	Parallel	24	14	51	0.5	4.5				750	
McNeil et al, ⁸⁸ 2004	Parallel	1193	56	66	4	4				500	
Meydani et al, ⁸⁹ 2004	Parallel	617	73	84	1	1				200	100
Mezey et al, ⁹⁰ 2004	Parallel	51	33	48	0.25	1				1000	
Richer et al, ⁹¹ 2004	Parallel	61	4	75	1	1	10	2500	1500	500	200
Avenell et al, ⁹² 2005	Parallel	910	47	72	1	1		2666	60	10	
Graf et al,93 2005	Parallel	160	35	58	1.5	1.5				5000	
Lee et al, ⁹⁴ 2005	2 × 2	39876	100	55	10.1	10.1	25			300	
Limburg et al, ⁹⁵ 2005	2 × 2	360	58	47	0.83	0.83					200
Lonn et al, ⁹⁶ 2005	2 × 2	9541	27	66	4.5	7				400	
Marras et al, ⁹⁷ 2005	2 × 2	800	34	61	2.6	13				2000	
Mooney et al, ⁹⁸ 2005	Parallel	284	45	37	1.25	1.25			500	400	
Tam et al, ¹⁰⁰ 2005	Parallel	39	100	46	0.23	2.67			500	800	
Witte et al, ¹⁰¹ 2005	Parallel	32	NA	NA	0.75	0.75		2666	500	400	50
Rayman et al, ¹⁰² 2006	Parallel	501	47	67	0.5	0.5					200

Abbreviation: NA, not available. Blank cells indicate that the supplement was not part of the study.

1.000002-1.000009; P=.003), dose of selenium (RR, 0.998; 95% CI, 0.997-0.999; P = .002, and bias-risk (RR, 1.16; 95% CI, 1.05-1.29; P=.004) on mortality. None of the other covariates (dose of vitamin C; dose of vitamin E; single or combined antioxidant regimen; duration of supplementation; and primary or secondary prevention) were significantly associated with mortality.

In multivariate meta-regression analysis including all covariates, dose of selenium was associated with significantly lower mortality (RR, 0.998; 95% CI, 0.997-0.999; P=.005) and lowbias risk trials with significantly higher mortality (RR, 1.16; 1.05-1.29; *P*=.005). None of the other covariates was significantly associated with mortality.

Bias Risk of Trials

In trials with low-bias risk mortality was significantly increased in the supplemented group (RR, 1.05; 95% CI, 1.02-1.08) without significant heterogeneity $(I^2=7.0\%)$. Exploratory analysis adding an imagined trial with 1 death and 20 000 participants in each study group had no noticeable effect on the result.

In high-bias risk trials (lowmethodological quality in ≥ 1 of the 4 components) mortality was significantly decreased in the supplemented group (RR, 0.91; 95% CI, 0.83-1.00) without significant heterogeneity $(I^2=4.5\%)$. The difference between the estimate of antioxidants on mortality in low- and high-bias risk trials was statistically significant by test of interaction (z=2.88, P=.004; FIGURE 2 and FIGURE 3).

Antioxidant Supplements Given Singly or in Combination

Beta carotene used singly significantly increased mortality (TABLE 5). This effect was not significant when combined with other supplements. After exclusion of

high-bias risk and selenium trials, beta carotene singly or combined significantly increased mortality (Table 5).

Vitamin A given singly or in combination with the other supplements did not significantly affect mortality. After exclusion of high-bias risk and selenium trials, vitamin A singly or combined significantly increased mortality (Table 5).

Vitamin E given singly or in combination with the other supplements did not significantly affect mortality (Table 5). Vitamin E given singly in high (\geq 1000 IU) or low dose (<1000

able 5. Participat		of Included Trials With High Risk of	
Source	Participants and Inclusion Criteria	Outcome Measures	Type of Prevention
Gillilan et al, ³⁵ 1977	Coronary artery disease	Improvement of angina pectoris	Secondary
McKeown-Eyssen et al, ³⁶ 1988	Removed colorectal adenomas	Newly diagnosed colorectal adenomas	Secondary
Penn et al, ³⁸ 1991	Elderly long-stay patients	Cell-mediated immune function	Secondary
Chandra, ³⁹ 1992	Elderly individuals	Infectious morbidity	Primary
Blot et al,41 1993	General population	Cancer incidence, cancer mortality, all-cause mortality	Primary
Wenzel et al, ⁴³ 1993	Alcoholic hepatitis	Duration of hospitalization, mortality	Secondary
Takamatsu et al, ⁴⁶ 1995	General population	Any illness	Primary
de la Maza et al,47 1995	Alcoholic cirrhosis	Liver function, mortality, hospitalization rates	Secondary
ter Riet et al,48 1995	Nursing home patients with pressure ulcers	Wound status and clinometric changes	Secondary
Hogarth et al, ⁵¹ 1996	Elderly medical in-patients	Weight, serum albumin levels, activities of daily living, cognitive functioning, length of stay	Secondary
Girodon et al, ⁵⁴ 1997	Elderly individuals	Infectious morbidity	Primary
Sano et al, ⁵⁶ 1997	Probable Alzheimer disease	Death, institutionalization, loss of ability to perform 2 of 3 basic activities of daily living	Secondary
Bonelli et al, ⁵⁷ 1998	Removed colorectal adenomas	Newly diagnosed colorectal adenomas	Secondary
GISSI,58 1999	Recent myocardial infarction	All-cause mortality, nonfatal myocardial infarction, nonfatal stroke, cardiovascular death	Secondary
Stevic et al, ⁶⁷ 2001	Probable or definitive amyotrophic lateral sclerosis	Survival and rate of disease progression	Secondary
You et al, ⁶⁸ 2001	General population	Prevalence of dysplasia, gastric cancer, chronic atrophic gastritis, intestinal metaplasia	Primary
de Gaetano, ⁶⁹ 2001	Elderly with at least 1 of the major cardiovascular risk factors	Cardiovascular death, nonfatal myocardial infarction and stroke, all-cause mortality, total cardiovascular events, angina pectoris, transient ischemic attacks, peripheral artery disease, revascularization procedures	Primary
de Waart et al, ⁷⁰ 2001	Male cigarette smokers	Progression of atherosclerosis	Primary
Sasazuki et al, ⁸¹ 2003	Chronic atrophic gastritis	Blood pressure	Secondary
Takagi et al, ⁸² 2003	Liver cirrhosis	Tumor-free survival and cumulative survival rate	Secondary
Petersen et al,99 2005	Amnestic mild cognitive impairment	Alzheimer disease	Secondary

IU) did not significantly affect mortality (RR, 1.07; 95% CI, 0.91-1.25; $I^2=0\%$ and RR, 1.00; 95% CI, 0.94-1.07; $I^2=13.0\%$, respectively). After exclusion of high-bias risk and selenium trials, vitamin E given singly or combined significantly increased mortality (Table 5).

Vitamin C given singly or in combination with the other supplements was without significant influence on mortality, even after the exclusion of highbias risk trials and selenium trials (Table 5).

Selenium given singly or in combination with other antioxidant supplements had no significant influence on mortality when analyzed separately (Table 5). Selenium given singly or combined significantly decreased mortality when analyzed together. After exclusion of high-bias risk trials, selenium given singly or with other antioxidants had no significant influence on mortality (Table 5).

COMMENT

Our systematic review contains a number of findings. Beta carotene, vitamin A, and vitamin E given singly or combined with other antioxidant supplements significantly increase mortality. There is no evidence that vitamin C may increase longevity. We lack evidence to refute a potential negative effect of vitamin C on survival. Selenium tended to reduce mortality, but we need more research on this question. We confirm that trials with inadequate bias control overestimate intervention effects.^{14,15,19,22-24} Our findings support and extend our previous findings regarding antioxidant supplements and increased mortality.14,15

Our review offers a number of strengths. It follows a published, peerreviewed Cochrane protocol,¹⁸ taking into consideration our previous findings in a systematic review on antioxidant supplements for preventing gastrointestinal cancers.^{14,15} Our review represents a comprehensive review of the topic, including 68 randomized trials with almost a quarter of a million participants. This increases the precision

848 JAMA, February 28, 2007-Vol 297, No. 8 (Reprinted)

Source	Participants and Inclusion Criteria	Outcome Measures	Type of Prevention	
Greenberg et al, ³⁷ 1990	History of BCC or SCC	Newly diagnosed BCC or SCC	Secondary	
Murphy et al,40 1992	Elderly nursing home residents	Bacterial infections	Secondary	
Li et al, ⁴² 1993	Esophageal dysplasia	Cancer incidence, cancer mortality, all-cause mortality	Secondary	
Greenberg et al,44 1994	Removed colorectal adenomas	Newly diagnosed colorectal adenomas	Secondary	
Pike and Chandra, ⁴⁵ 1995	Elderly individuals	Immune indices	Primary	
Clark et al, ⁴⁹ 1996	History of BCC or SCC	Incidence of SCC and BCC, cancer incidence, cancer mortality, all-cause mortality	Secondary	
Hennekens et al, ⁵⁰ 1996	Male physicians	Incidence of cancer and CVD and all-cause mortality	Primary	
Richer, ⁵² 1996	Age-related macular degeneration	Age-related macular degeneration	Secondary	
Stephens et al, ⁵³ 1996	Coronary artery disease	Nonfatal myocardial infarction and cardiovascular death	Secondary	
Moon et al,55 1997	History of BCC or SCC	Newly diagnosed SCC and BCC	Secondary	
Girodon et al, ⁵⁹ 1999	Institutionalized elderly patients	Delayed-type hypersensitivity skin response, humoral response to influenza vaccine, and infectious morbidity and mortality	Secondary	
Green et al,60 1999	History of BCC or SCC	Newly diagnosed SCC and BCC	Secondary	
Boaz et al, ⁶¹ 2000	Stable hemodialysis patients with a documented medical history of CVD	Acute myocardial infarction (fatal and nonfatal), ishemic stroke, peripheral vascular disease, unstable angina, CVD mortality, all-cause mortality	Secondary	
Correa et al, ⁶² 2000	Multifocal atrophic gastritis with or without intestinal metaplasia and dysplasia	Change of gastric precancerous lesions	Secondary	
Jacobson et al,63 2000			Primary	
AREDS, ⁶⁴ 2001	Aged-related macular degeneration	Increase in nuclear, cortical or posterior subcapsular opacity grades, cataract surgery, loss of visual acuity	Secondary	
Brown et al, ⁶⁵ 2001	Coronary artery disease	Change in coronary stenosis, first cardiovascular event (death, myocardial infarction, stroke, or revascularization)	Secondary	
Desnuelle et al, ⁶⁶ 2001	Probable or definitive amyotrophic lateral sclerosis	Change in functional status, survival, bulbar function	Secondary	
Chylack et al, ⁷¹ 2002	Cataract	Cataract progression	Secondary	
Graat et al, ⁷² 2002	Elderly individuals	Acute respiratory tract infections	Primary	
Heart Protection Study, ⁷³ 2002	Coronary and other occlusive arterial disease or diabetes	Major coronary events, fatal and nonfatal vascular events, cancer, other morbidity	Secondary	
Hodis et al, ⁷⁴ 2002	Healthy individuals (serum LDL cholesterol >3.37 mmol/L)	Rate of change in the right distal common carotid artery intima-media thickness	Primary	
Waters et al,75 2002	Coronary artery disease	Progression of coronary artery disease	Secondary	
White et al, ⁷⁶ 2002	Patients with Barrett esophagus on long-term acid suppression therapy	Prevention of potentially premalignant modifications to DNA in the human stomach	Secondary	
Wluka et al,77 2002	Knee osteoarthritis	Change in cartilage volume	Secondary	
Collins et al, ⁷⁸ 2003	Patients with peripheral arterial disease	Walking ability and perceived quality of life	Secondary	
Prince et al, ⁷⁹ 2003	Primary biliary cirrhosis	Change in patient fatigue	Secondary	
Salonen et al, ⁸⁰ 2003	Healthy individuals (serum cholesterol >5 mmol/L)	Progression of carotid atherosclerosis	Primary	
Virtamo et al ⁸³ 2003	Male cigarette smokers	Lung cancer and other major cancers, all-cause and cause-specific mortality, incidence of other disease	Primary	
Allsup et al, ⁸⁴ 2004	Older institutionalized people	Response to influenza vaccine	Secondary	
Goodman et al, ⁸⁵ 2004	Cigarette smokers, former smokers, and workers exposed to asbestos	Lung cancer, other cancers, mortality	Primary	
Hercberg et al, ⁸⁶ 2004	General population	Incidence of cancer and CVD and all-cause mortality	Primary	
Manuel-y-Keenoy et al, ⁸⁷ 2004	Type 1 diabetic patients	Impact on lipids and peroxidation during statin treatment	Secondary	
McNeil et al, ⁸⁸ 2004	Early or no cataract	Age-related cataract	Secondary	

Table 4. Participants and Outcome Measures of Included Trials With Low Risk of Bias

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, February 28, 2007—Vol 297, No. 8 849

Source	Participants and Inclusion Criteria	Outcome Measures	Type of Prevention
Meydani et al, ⁸⁹ 2004	Elderly individuals	Respiratory tract infections, emergency department visits, hospitalization, and death	Primary
Mezey et al,90 2004	Alcoholic hepatitis	Clinical and laboratory parameters of liver function and markers of fibrogenesis	Secondary
Richer et al, ⁹¹ 2004	Age-related macular degeneration	Visual function	Secondary
Avenell et al, ⁹² 2005	Elderly individuals irrespective of chronic illness	Self-reported days of infection, use of health services, quality of life	Primary
Graf et al,93 2005	Probable or definitive amyotrophic lateral sclerosis	Survival	Secondary
Lee et al, ⁹⁴ 2005	Female health professionals	Invasive cancer, fatal and nonfatal myocardial infarction, stroke, mortality	Primary
Limburg et al, ⁹⁵ 2005	Patients with esophageal dysplasia	Change in histological grade of esophageal dysplasia	Secondary
Lonn et al, ⁹⁶ 2005	History of CVD or diabetes in the presence of at least one additional cardiovascular risk factor	Cancer incidence, cancer deaths, major cardiovascular events, unstable angina, congestive heart failure, revascularization or amputation, all-cause mortality	Secondary
Marras et al, ⁹⁷ 2005	Early Parkinson disease not requiring levodopa	Level of functional disability for initiation of levodopa therapy	Secondary
Mooney et al,98 2005	Cigarette smokers	Level of an intermediate cancer risk marker	Primary
Tam et al, ¹⁰⁰ 2005	Systemic lupus erythematosus	Effects on markers of oxidative stress, antioxidant defense, and endothelial function	Secondary
Witte et al, ¹⁰¹ 2005	Stable chronic heart failure due to ischemic heart disease	Left ventricular function, levels of proinflammatory cytokines, quality of life	Secondary
Rayman et al, ¹⁰² 2006	General population	Mood, quality of life, plasma selenium levels	Primary

Table 4. Participants and Outcome Measures of Included Trials With Low Risk of Bias (cont)

and power of our analyses.¹⁷ Previous meta-analyses of preventive trials of antioxidant supplements have included less information (lung cancer, 4 trials with 109 394 participants¹⁰³; cardiovascular diseases, 8 trials with 138 113 participants¹⁰⁴; gastrointestinal cancers, 14 trials with 170 525 participants^{14,15}; colorectal adenoma, 8 trials with 17 620 participants¹⁹; cancer or preinvasive lesions, 7 trials with 5112 participants¹⁰⁵; and mortality, 19 trials with 135 967 participants¹⁰⁶).

Previous studies either found no beneficial or harmful effect of the supplements^{19,103-105,107} or reported a significantly increased mortality.^{14,15,103,104,106} We conducted a thorough assessment of trial methodology following the recommendations of the Cochrane Collaboration¹⁷ and findings of methodological studies.²²⁻²⁴ More than two thirds of the included trials with more than 180 000 participants fall in the group of low-bias risk trials. This highlights the validity of our results.²²⁻²⁴ Antioxidant supplements not only seem to be one of the most researched topics in the world, they also seem to be one of the most adequately researched clinical questions. Only a small proportion of trials use adequate methodologies.108,109 Our meta-analyses had little trial heterogeneity. This increases the trustworthiness of our findings. Our analyses were robust to sensitivity analyses involving different imputations of mortality in the 0-event study groups. We gave full account of all 405 identified trials assessing the supplements having 0 events in both study groups. These trials were mostly assessing short-term supplement administration and surrogate outcome measures. Our results were robust to exploratory analyses adding an imagined trial with 20 000 participants and one death in each intervention group. Accordingly, the increased mortality does not seem to be an artifact created by exclusion of trials with 0 events in both study

groups.^{27,28} Furthermore, all-cause mortality should generally be connected with unbiased estimates.

A large number of unpublished trials on supplements may exist. Their results are more likely to have been either neutral or negative than to have shown beneficial effects.¹¹⁰ Accordingly, our estimates of increased mortality of about 5% is likely to be conservative.

The choice of statistical model for performing meta-analysis of sparse data are important.^{27,28} Because many methods are based on large sample approximations, they may be unsuitable when events are rare. Bradburn et al²⁸ found that no method gives completely unbiased estimates. At event rates below 1%, the Peto odds-ratio method appears to be the least biased and most powerful method when there is no substantial imbalance in treatment and control group sizes within trials, and treatment effects are not exceptionally large. Bradburn et al²⁸ also demonstrated that the Peto odds ratio works well up to event rates around 10%. The calculation

	Mort	ality		
Source	Antioxidants, No./Total	Control, No./Total	Relative Risk (Random-Effects Model) (95% Cl)	Favors Favors
Greenberg et al, ³⁷ 1990	79/913	72/892	1.07 (0.79-1.46)	
lurphy et al, ⁴⁰ 1992	4/53	2/56	2.11 (0.40-11.06)	
et al,42 1993	157/1657	167/1661	0.94 (0.77-1.16)	-
reenberg et al, ⁴⁴ 1994	30/650	14/214	0.71 (0.38-1.31)	
ike et al, ⁴⁵ 1995	1/24	0/23	2.88 (0.12-67.29)	
lark et al. ⁴⁹ 1996	108/653	129/659	0.84 (0.67-1.07)	-
ennekens et al, ⁵⁰ 1996	979/11036	968/11035	1.01 (0.93-1.10)	÷
cher, ⁵² 1996	2/39	2/32	0.82 (0.12-5.50)	
ephens et al, ⁵³ 1996	68/1035	52/967	1.22 (0.86-1.73)	
oon et al. ⁵⁵ 1997	62/1157	53/1140	1.15 (0.81-1.65)	
rodon et al, ⁵⁹ 1999	155/543	51/182	1.02 (0.78-1.33)	- - -
reen et al. ⁶⁰ 1999	15/801	22/820	0.70 (0.36-1.34)	
baz et al, ⁶¹ 2000	31/97	29/99	1.09 (0.72-1.66)	
orrea et al, ⁶² 2000	16/739	2/237	2.57 (0.59-11.08)	
cobson et al, ⁶³ 2000	0/57	1/55	0.32 (0.01-7.74)	
REDS, ⁶⁴ 2001	251/2370	240/2387	1.05 (0.89-1.25)	-
own et al. ⁶⁵ 2001	17/84	13/76	1.18 (0.62-2.27)	
esnuelle et al, ⁶⁶ 2001	34/144	35/144	0.97 (0.64-1.47)	
nylack et al, ⁷¹ 2002	9/149	3/144	2.98 (0.82-10.79)	
	3/499	5/153	0.18 (0.04-0.76)	
aat et al, ⁷² 2002	1446/10269		. ,	
eart Protection Study, ⁷³ 2002		1389/10267	1.04 (0.97-1.11)	
odis et al, ⁷⁴ 2002	2/177	1/176	1.99 (0.18-21.73)	
aters et al, ⁷⁵ 2002	16/212	6/211	2.65 (1.06-6.65)	
hite et al, ⁷⁶ 2002	1/50	1/50	1.00 (0.06-15.55)	
uka et al, ⁷⁷ 2002	1/67	0/69	3.09 (0.13-74.50)	
ollins et al, ⁷⁸ 2003	1/26	1/26	1.00 (0.07-15.15)	
nce et al, ⁷⁹ 2003	1/29	0/32	3.30 (0.14-77.95)	
lonen et al, ⁸⁰ 2003	19/390	3/130	2.11 (0.63-7.02)	
tamo et al, ⁸³ 2003	8226/21 846	2605/7287	1.05 (1.02-1.09)	
sup et al, ⁸⁴ 2004	4/81	4/83	1.02 (0.27-3.96)	
oodman et al, ⁸⁵ 2004	1855/9420	1509/8894	1.16 (1.09-1.23)	
ercberg et al, ⁸⁶ 2004	76/6481	98/6536	0.78 (0.58-1.05)	
anuel-y-Keenoy et al, ⁸⁷ 2004	1/12	0/12	3.00 (0.13-67.06)	
cNeil et al, ⁸⁸ 2004	20/595	11/598	1.83 (0.88-3.78)	
eydani et al, ⁸⁹ 2004	39/311	44/306	0.87 (0.58-1.30)	
ezey et al, ⁹⁰ 2004	4/25	5/26	0.83 (0.25-2.75)	
cher et al, ⁹¹ 2004	0/30	2/31	0.21 (0.01-4.13)	
enell et al,92 2005	8/456	4/454	1.99 (0.60-6.57)	
af et al,93 2005	31/83	28/77	1.03 (0.68-1.54)	
e et al, ⁹⁴ 2005	636/19937	615/19939	1.03 (0.93-1.15)	
nburg et al, ⁹⁵ 2005	1/180	0/180	3.00 (0.12-73.16)	
nn et al, ⁹⁶ 2005	799/4761	801/4780	1.00 (0.92-1.10)	
arras et al, ⁹⁷ 2005	154/399	142/401	1.09 (0.91-1.31)	
boney et al, ⁹⁸ 2005	1/142	0/142	3.00 (0.12-73.03)	
m et al, ¹⁰⁰ 2005	1/20	1/19	0.95 (0.06-14.13)	
itte et al, ¹⁰¹ 2005	1/16	1/16	1.00 (0.07-14.64)	
ayman et al, ¹⁰² 2006	1/380	0/121	0.96 (0.04-23.43)	
verall	15366/99095	9131/81 843	1.05 (1.02-1.08)	
				1

Error bars indicate 95% confidence intervals (CIs).

ANTIOXIDANT SUPPLEMENTS AND MORTALITY

avoids addition of 0.5-event adjustments (or any other adjustment). When we applied Peto odds ratio, we found even stronger support for detrimental effects of the supplements (for all 68 trials: 1.05; 95% CI, 1.02-1.08; for the 47 low-bias risk trials: 1.07; 95% CI, 1.04-1.10; after exclusion of high-bias risk trials and selenium trials, for beta carotene: 1.09; 95% CI, 1.06-1.13; for vitamin A: 1.20; 95% CI, 1.12-1.29; for vitamin C: 1.06; 95% CI, 0.99-1.14; and for vitamin E: 1.06; 95% CI, 1.02-1.10).

Our systematic review has several limitations. As with all systematic reviews, our findings and interpretations are limited by the quality and quantity of available evidence on the effects of specific supplements on mortality. The examined populations varied. The effects of supplements were assessed in the general population or in patients with gastrointestinal, cardiovascular, neurological, skin, ocular, renal, endocrinological, and rheumatoid diseases. These populations mostly came from countries without overt deficiencies of specific supplements. Accordingly, we are unable to assess how antioxidant supplements affect mortality in populations with specific needs.

We have compared antioxidants with different properties, given at different doses and duration, singly or combined. We are aware of the potential risks in assessing the effects of different types of antioxidants together with different mechanisms of action, biotransformation, and bioavailability. There are pros¹¹¹⁻¹¹³ and cons¹¹⁴ in the literature about vitamin A being antioxidant. We fully acknowledge this. Most trials assessed combinations of different supplements, which reflects the way supplements are marketed, sold, and taken by people.⁷⁻¹⁰

The methodological quality of some of the trials was assessed using the published reports, which may not reflect the actual design and bias risk of the trials. Some authors responded to our requests for further information.

All available nonenzymatic antioxidants work differently in the human body, and most of them exert effects that are nonantioxidant. We are not able to point to the specific biochemical mechanisms behind the detrimental effects. We found that trials examining the individual supplements singly were rare. It has been suggested that antioxidant supplements may show interdependency and may have effects only if given in combination.¹¹⁵

Most trials investigated the effects of supplements administered at higher doses than those commonly found in a balanced diet, and some of the trials used doses well above the recommended daily allowances and even

Figure 3. Intervention Effect of Antioxidant Supplements vs Placebo or No Intervention on Mortality in Trials With High Risk of Bias

	Mor	tality		
Source	Antioxidants, No./Total	Control, No./Total	Relative Risk (Random-Effects Model) (95% Cl)	Favors Favors Antioxidants Control
Gillilan et al, ³⁵ 1977	2/26	2/26	1.00 (0.15-6.57)	
McKeown-Eyssen et al, ³⁶ 1988	4/96	3/89	1.24 (0.28-5.37)	
Penn et al, ³⁸ 1991	1/15	0/15	3.00 (0.13-68.26)	
Chandra, ³⁹ 1992	0/48	2/48	0.20 (0.01-4.06)	
Blot et al, ⁴¹ 1993	1847/25886	280/3698	0.94 (0.84-1.06)	•
Wenzel et al,43 1993	2/31	10/25	0.16 (0.04-0.67)	_
Takamatsu et al,46 1995	1/74	0/73	2.96 (0.12-71.50)	
de la Maza et al,47 1995	5/37	4/37	1.25 (0.36-4.29)	
ter Riet et al,48 1995	3/43	5/45	0.63 (0.16-2.47)	
Hogarth et al, ⁵¹ 1996	7/54	6/52	1.12 (0.40-3.12)	_
Girodon et al, ⁵⁴ 1997	18/61	7/20	0.84 (0.41-1.72)	—— — —
Sano et al, ⁵⁶ 1997	19/170	22/171	0.87 (0.49-1.55)	_ _
Bonelli et al,57 1998	1/147	0/157	3.20 (0.13-78.00)	
GISSI, ⁵⁸ 1999	488/5660	529/5664	0.92 (0.82-1.04)	
Stevic et al,67 2001	3/16	6/12	0.38 (0.12-1.20)	
You et al, ⁶⁸ 2001	38/1706	43/1705	0.88 (0.57-1.36)	
de Gaetano, ⁶⁹ 2001	72/2231	68/2264	1.07 (0.78-1.49)	
de Waart et al, ⁷⁰ 2001	0/109	1/109	0.33 (0.01-8.09)	
Sasazuki et al, ⁸¹ 2003	6/222	18/217	0.33 (0.13-0.81)	_
Takagi et al, ⁸² 2003	10/51	16/42	0.51 (0.26-1.01)	
Petersen et al, ⁹⁹ 2005	5/257	5/259	1.01 (0.30-3.44)	
Overall	2532/36940	1027/14728	0.91 (0.83-1.00)	
Test For Heterogeneity: χ^2_{20} = 20.95; <i>P</i> = .40; I ² = 4.5%				
Test For Overall Effect: $Z = 2.03$; $P = .04$				0.01 0.1 1.0 10 10 Relative Risk (Random-Effects Model)

Error bars indicate 95% confidence intervals (CIs).

852 JAMA, February 28, 2007-Vol 297, No. 8 (Reprinted)

Experimental Antioxidant Supplements	References	No. of Trials	No. of Participants	Random-Effects Model Meta-analysis: Relative Risk (95% Confidence Interval)	Heterogeneity I ² , %
Beta carotene given singly	37, 44, 50, 60, 62, 83	6	40 977	1.06 (1.01-1.11)	5.4
Beta carotene given in combination with other antioxidant supplements	39, 41-44, 54, 59, 62-65, 68, 71-73, 79, 81, 83, 85, 86, 91, 94	22	139 572	1.01 (0.94-1.08)	55.6
Beta carotene given singly or in combination with other antioxidant supplements	37, 39, 41-44, 50, 54, 59, 60, 62-65, 68, 71-73, 79, 81, 83, 85, 86, 91, 94	25	172811	1.01 (0.96-1.08)	52.2
Beta carotene given singly or in combination with other antioxidant supplements after exclusion of high-bias risk and selenium trials	37, 44, 50, 60, 62-64, 71, 73, 83, 85, 94	12	132 610	1.07 (1.02-1.11)	36.8
Vitamin A given singly	40, 55	2	2406	1.18 (0.84-1.68)	0
Vitamin A given in combination with other antioxidant supplements	38, 39, 41, 42, 45, 51, 52, 57, 72, 84, 85, 91, 92, 101	14	42 431	1.03 (0.90-1.19)	33.9
Vitamin A given singly or in combination with other antioxidant supplements	38-42, 45, 51, 52, 55, 57, 72, 84, 85, 91, 92, 101	16	44 837	1.05 (0.93-1.19)	26.1
Vitamin A given singly or in combination with other antioxidant supplements after exclusion of high-bias risk and selenium trials	40, 45, 55, 85, 92	5	21 677	1.16 (1.10-1.24)	0
Vitamin E given singly	35, 46, 47, 53, 56, 58, 61, 66, 69, 70, 72, 74, 77, 78, 80, 82, 83, 87, 88, 90, 93, 96, 97, 99	24	47 007	1.02 (0.98-1.05)	0
Vitamin E given in combination with other antioxidant supplements	36, 38, 39, 41-45, 52, 54, 57, 59, 61, 63-65, 67-69, 71-73, 75, 76, 79, 80, 83, 84, 86, 89, 91, 92, 94, 98, 100, 101	36	128737	1.01 (0.95-1.06)	17.2
Vitamin E given singly or in combination with other antioxidant supplements	35, 36, 38, 39, 41-47, 52-54, 56-59, 61, 63-65, 67-69, 71-73, 75, 76, 79, 80, 83, 84, 86, 89, 91, 92, 94, 98, 100, 101	55	163 510	1.01 (0.98-1.05)	2.8
Vitamin E given singly or in combination with other antioxidant supplements after exclusion of high-bias risk and selenium trials	44, 45, 53, 61, 63, 64, 66, 71, 73-78, 80, 83, 88, 90, 92-98, 100	26	105 065	1.04 (1.01-1.07)	0
Vitamin C given singly	48, 62, 80	3	826	0.88 (0.32-2.42)	0
Vitamin C given in combination with other antioxidant supplements	36, 38, 39, 41-45, 51, 52, 54, 57, 59, 62-65, 68, 71-73, 75, 76, 79-81, 84, 86, 91, 92, 98, 100, 101	33	69997	0.97 (0.88-1.07)	22.1
Vitamin C given singly or in combination with other antioxidant supplements	36, 38, 39, 41-45, 48, 51, 52, 54, 57, 59, 62-65, 68, 71-73, 75, 76, 79-81, 84, 86, 91, 92, 98, 100, 101	34	70456	0.97 (0.88-1.06)	19.4
Vitamin C given singly or in combination with other antioxidant supplements after exclusion of high-bias risk and selenium trials	44, 45, 62-64, 71, 73, 75, 76, 80, 92, 98, 100	13	29275	1.06 (0.94-1.20)	10.3
Selenium given singly	49, 95, 102	3	1993	0.85 (0.68-1.07)	0
Selenium given in combination with other antioxidant supplements	39, 41-43, 52, 54, 57, 59, 65, 67, 68, 72, 79, 84, 86, 89, 91, 101	18	40980	0.90 (0.81-1.01)	9.5
Selenium given singly or in combination with other antioxidant supplements	39, 41-43, 49, 52, 54, 57, 59, 65, 67, 68, 72, 79, 84, 86, 89, 91, 95, 101, 102	21	54065	0.91 (0.84-0.99)	0
Selenium given singly or in combination with other antioxidant supplements after exclusion of high-bias risk trials	42, 49, 52, 59, 65, 72, 79, 84, 86, 89, 91, 95, 101, 102	14	20525	0.90 (0.80-1.02)	0

Table 5. Intervention Effects of Different Antioxidant Supplements vs Placebo or No Intervention on Mortality

above the tolerable upper intake levels.^{116,117} Our meta-regression analyses revealed significant effects of dose of beta carotene, vitamin A, and selenium on mortality. The duration of supplementation and follow-up differed among the trials. However, we found no significant effect of treatment duration on our results.

We only assessed all-cause mortality. We are not able to determine the cause of the increased mortality. It is likely that increased cancer and cardiovascular mortality are the main reasons for the increased all-cause mortality.^{103,104} Further study of causes of mortality is needed. We fear that its assessment may be difficult due to varying definitions in the included trials. Our results extend previous reviews^{14,15,19,103-107} and guidelines,¹¹⁸⁻¹²⁰ suggesting that antioxidant supplements may not be beneficial.

Beta carotene, administered singly or in combination with other antioxidants, significantly increased all-cause mortality. Recent studies have suggested that beta carotene may act as a cocarcinogen.121,122 Vitamin A combined with other antioxidants significantly increased mortality. We found that vitamin E given singly or combined with 4 other antioxidants did not significantly influence mortality. After exclusion of high-bias risk trials, however, vitamin E given singly or combined significantly increased mortality. This is in agreement with a recent meta-analysis.¹⁰⁶ Dose of vitamin E was without significant effect on mortality in our analysis. The chance that vitamin E may benefit seems low.123-125

The trials in which vitamin C was applied singly or in different combinations with beta carotene, vitamin A, vitamin E, and selenium found no significant effect on mortality. According to the CIs, small beneficial or large harmful effects cannot be excluded. We calculated the proportion of participants who died in the trials in which participants took vitamin C alone. In the control group it was 0.019 and in the vitamin C group it was 0.017. With α set to .05 and power to .90, the required sample size would be 186 000 participants. We are still far from having examined a sufficient sample. Studies have demonstrated that vitamin C may act as both a pro-oxidant and as an antioxidant in vivo,^{126,127} and trials should be monitored closely for harm.

Selenium given singly or in combination with other supplements seemed to significantly decrease mortality, but after exclusion of high-bias risk trials, the effect disappeared. Results of ongoing randomized trials with selenium will likely increase our understanding of the effects of selenium.¹²⁸

Our findings contradict the findings of observational studies, claiming that antioxidants improve health.¹²⁹⁻¹³² Considering that 10% to 20% of the adult population (80-160 million people) in North America and Europe may consume the assessed supplements,⁷⁻¹⁰ the public health consequences may be substantial. We are exposed to intense marketing with a contrary statement, which is also reflected by the high number of publications per included randomized trial found in the present review.

There are several possible explanations for the negative effect of antioxidant supplements on mortality. Although oxidative stress has a hypothesized role in the pathogenesis of many chronic diseases, it may be the consequence of pathological conditions.133 By eliminating free radicals from our organism, we interfere with some essential defensive mechanisms like apoptosis, phagocytosis, and detoxification.¹³⁴⁻¹³⁶ Antioxidant supplements are synthetic and not subjected to the same rigorous toxicity studies as other pharmaceutical agents.137 Better understanding of mechanisms and actions of antioxidants in relation to a potential disease is needed.138

Because we examined only the influence of synthetic antioxidants, our findings should not be translated to potential effects of fruits and vegetables.

CONCLUSION

We did not find convincing evidence that antioxidant supplements have beneficial effects on mortality. Even more, beta carotene, vitamin A, and vitamin E seem to increase the risk of death. Further randomized trials are needed to establish the effects of vitamin C and selenium.

Author Contributions: Dr Bjelakovic had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Bjelakovic, Nikolova, L. Gluud, Simonetti, C. Gluud.

Acquisition of data: Bjelakovic, Nikolova, C. Gluud. Analysis and interpretation of data: Bjelakovic, Nikolova, L. Gluud, Simonetti, C. Gluud.

Drafting of the manuscript: Bjelakovic, Nikolova, L. Gluud, Simonetti, C. Gluud.

Critical revision of the manuscript for important intellectual content: Bjelakovic, Nikolova, L. Gluud, C. Gluud.

Statistical analysis: Bjelakovic, L. Gluud, Simonetti, C. Gluud.

Obtained funding: C. Gluud.

Administrative, technical, or material support: Nikolova, C. Gluud.

Study supervision: Bjelakovic, C. Gluud.

Financial Disclosures: None reported.

Funding/Support: Supported by The Copenhagen Trial Unit, Center for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Role of the Sponsor: The funding source had no role in the conduct of the study, collection of data, management, analysis, interpretation of the data, or preparation of the manuscript.

Acknowledgment: We thank the participants who entered the trials and the investigators who conducted them. We thank authors who kindly responded to our requests for further information on the trials they were involved in. We thank Yan Gong, MD, MIH, Copenhagen Trial Unit, Center for Clinical Intervention Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, for assistance with statistical analyses and Sarah Louise Klingenberg, Cochorane Hepato-Billary Group, Copenhagen Trial Unit, Center for Clinical Intervention Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, for help with paper copies of articles. None has received any money for assistance.

REFERENCES

1. Sies H. Introductory remarks. In: Sies H, ed. Oxidative stress. Orlando, Fla: Academic Press; 1985: 1-7.

2. Halliwell B, Gutteridge JMC. Free Radicals. In: *Biology and Medicine*. 3rd ed. London, England: Oxford University Press; 1999.

3. Papas AM. Diet and antioxidant status. In: Papas AM, ed. *Antioxidant Status, Diet, Nutrition, and Health.* Boca Raton, Fla: CRC Press; 1998:89-94.

4. Halliwell B. Antioxidants in human health and disease. *Annu Rev Nutr.* 1996;16:33-50.

5. Halliwell B. Antioxidant defense mechanisms: from the beginning to the end (of the beginning). *Free Radic Res.* 1999;31:261-272.

6. Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. *Crit Rev Food Sci Nutr*. 2004;44:275-295.

7. Balluz LS, Kieszak SM, Philen RM, Mulinare J. Vitamin and mineral supplement use in the United States:

results from the third National Health and Nutrition Examination Survey. *Arch Fam Med*. 2000;9:258-262.

8. Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano MF. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999-2000. *Am J Epidemiol*. 2004;160:339-349.

9. Millen AE, Dodd KW, Subar AF. Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: the 1987, 1992, and 2000 National Health Interview Survey results. J Am Diet Assoc. 2004;104:942-950.

 Nichter M, Thompson JJ. For my wellness, not just my illness: North Americans' use of dietary supplements. *Cult Med Psychiatry*. 2006;30:175-222.
 Herbert V. The value of antioxidant supplements vs their natural counterparts. *J Am Diet Assoc*. 1997;97:375-376.

12. Stanner SA, Hughes J, Kelly CN, Buttriss J. A review of the epidemiological evidence for the "antioxidant hypothesis." *Public Health Nutr.* 2004;7:407-422.

13. Berger MM. Can oxidative damage be treated nutritionally? *Clin Nutr.* 2005;24:172-183.

14. Bjelakóvic G, Nikolova D, Šimonetti RG, Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. *Cochrane Database Syst Rev.* 2004; (4):CD004183. doi: 10.1002/14651858.CD004183 .pub2.

15. Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. *Lancet.* 2004;364:1219-1228.

16. Forman D, Altman D. Vitamins to prevent cancer: supplementary problems. *Lancet*. 2004;364:1193-1194.
17. Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 4.2.5 [updated May 2005]. http://www.cochrane.org/resources/handbook /hbook.htm. Accessed January 26, 2007.

18. Bjelakovic G, Nikolova Ď, Simonetti R. Antioxidants for preventing gastrointestinal cancers (protocol for a Cochrane Review), The Cochrane Library, Issue 2. Oxford: Update Software; 2003.

19. Bjelakovic G, Nagorni A, Nikolova D, Simonetti RG, Bjelakovic M, Gluud C. Meta-analysis: antioxidant supplements for primary and secondary prevention of colorectal adenoma. *Aliment Pharmacol Ther*. 2006;24:281-291.

 Royle P, Milne R. Literature searching for randomized controlled trials used in Cochrane reviews: rapid vs exhaustive searches. Int J Technol Assess Health Care. 2003;19:591-603.

21. World Bank list of economies (July 2006). http: //siteresources.worldbank.org/DATASTATISTICS /Resources/CLASS.XLS. Accessed August 24, 2006.

22. Moher D, Pham B, Jones A, et al. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analysis. *Lancet.* 1998; 352:609-613.

23. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA*. 1995;273:408-412.

24. Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. *Ann Intern Med.* 2001;135:982-989.

25. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7:177-188.

26. DeMets DL. Methods for combining randomized clinical trials: strengths and limitations. *Stat Med.* 1987; 6:341-350.

27. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? use and avoidance of continuity corrections in meta-analyses of sparse data. *Stat Med.* 2004; 23:1351-1375.

28. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A.

Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. *Stat Med.* 2007;26:53-77.

29. Sharp SJ. Metaanalysis regression. *STATA Techn Bull*. 1998:42:16-22.

30. McAlister FA, Straus SE, Sackett DL, Altman DG. Analysis and reporting of factorial trials: a systematic review. *JAMA*. 2003;289:2545-2553.

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002;21:1539-1558.
 Altman DG, Bland JM. Interaction revisited: the difference between two estimates. *BMJ*. 2003;326:219.
 Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics*. 1994;50:1088-1101.

34. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629-634.

35. Gillilan RE, Mondell B, Warbasse JR. Quantitative evaluation of vitamin E in the treatment of angina pectoris. *Am Heart J.* 1977;93:444-449.

36. McKeown-Eyssen G, Holloway C, Jazmaji V, Bright-See E, Dion P, Bruce WR. A randomized trial of vitamins C and E in the prevention of recurrence of colorectal polyps. *Cancer Res.* 1988;48:4701-4705.

37. Greenberg ER, Baron JA, Stukel TA, et al; Skin Cancer Prevention Study Group. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. *N Engl J Med.* 1990;323:789-795.

38. Penn ND, Purkins L, Kelleher J, Heatley RV, Mascie-Taylor BH, Belfield PW. The effect of dietary supplementation with vitamins A, C and E on cell-mediated immune function in elderly long-stay patients: a randomized controlled trial. *Age Ageing*. 1991;20:169-174.

39. Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. *Lancet.* 1992;340:1124-1127.

40. Murphy S, West KP Jr, Greenough WB III, Cherot E, Katz J, Clement L. Impact of vitamin A supplementation on the incidence of infection in elderly nursing-home residents: a randomized controlled trial. *Age Ageing.* 1992;21:435-439.

41. Blot WJ, Li JY, Taylor PR, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. *J Natl Cancer Inst.* **1**993;85:1483-1492.

42. Li JY, Taylor PR, Li B, et al. Nutrition intervention trials in Linxian, China: multiple vitamin/mineral supplementation, cancer incidence, and disease-specific mortality among adults with esophageal dysplasia. *J Natl Cancer Inst.* **1**993;85:1492-1498.

43. Wenzel G, Kuklinski B, Ruhlmann C, Ehrhardt D. Alkoholtoxische Hepatitis—eine "freie Radikale" assoziierte Erkrankung Letalitatssenkung durch adjuvante Antioxidantientherapie. *Z Gesamte Inn Med.* 1993;48: 490-496.

44. Greenberg ER, Baron JA, Tosteson TD, et al; Polyp Prevention Study Group. A clinical trial of antioxidant vitamins to prevent colorectal adenoma. *N Engl J Med*. 1994;331:141-147.

45. Pike J, Chandra RK. Effect of vitamin and trace element supplementation on immune indices in healthy elderly. *Int J Vitam Nutr Res.* 1995;65:117-121.

46. Takamatsu S, Takamatsu M, Satoh K, et al. Effects on health of dietary supplementation with 100 mg d-alpha-tocopheryl acetate, daily for 6 years. *J Int Med Res.* 1995;23:342-357.

47. de la Maza MP, Petermann M, Bunout D, Hirsch S. Effects of long-term vitamin E supplementation in alcoholic cirrhotics. *J Am Coll Nutr.* 1995;14:192-196

 ter Riet G, Kessels AG, Knipschild PG. Randomized clinical trial of ascorbic acid in the treatment of pressure ulcers. J Clin Epidemiol. 1995;48:1453-1460.
 Clark LC, Combs GF Jr, Turnbull BW, et al. Effects

of selenium supplementation for cancer prevention in

patients with carcinoma of the skin: a randomized controlled trial. JAMA. 1996;276:1957-1963.

50. Hennekens CH, Buring JE, Manson JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. *N Engl J Med.* 1996;334:1145-1149.

51. Hogarth MB, Marshall P, Lovat LB, et al. Nutritional supplementation in elderly medical in-patients: a double-blind placebo-controlled trial. *Age Ageing*. 1996; 25:453-457.

52. Richer S. Multicenter ophthalmic and nutritional agerelated macular degeneration study, II: antioxidant intervention and conclusions. *J Am Optom Assoc.* 1996; 67:30-49.

 Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). *Lancet*. 1996; 347:781-786.

54. Girodon F, Lombard M, Galan P, et al. Effect of micronutrient supplementation on infection in institutionalized elderly subjects: a controlled trial. *Ann Nutr Metab*. 1997;41:98-107.

55. Moon TE, Levine N, Cartmel B, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. *Cancer Epidemiol Biomarkers Prev*. 1997;6:349-956.

56. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease: the Alzheimer's Disease Cooperative Study. *N Engl J Med.* 1997;336:1216-1222.
57. Bonelli L, Camoriano A, Ravelli P, Missale G, Bruzzi P, Aste H. Reduction of the incidence of metachronous adenomas of the large bowel by means of antioxidants. In: Palmieri Y, ed. *Proceedings of International Selenium Tellurium Development Association.* Brussels, Belgium: Se-Te Press; 1998:91-94.

58. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico (GISSI). Dietary supplementation with N-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. *Lancet.* 1999;354:447-455.

59. Girodon F, Galan P, Monget AL, et al; MIN VIT AOX Geriatric Network. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. *Arch Intern Med.* 1999;159:748-754.

60. Green A, Williams G, Neale R, et al. Daily sunscreen application and beta-carotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. *Lancet.* **1999**:354:723-729.

61. Boaz M, Smetana S, Weinstein T, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebocontrolled trial. *Lancet.* 2000;356:1213-1218.

62. Correa P, Fontham ET, Bravo JC, et al. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. *J Natl Cancer Inst.* 2000;92:1881-1888.

63. Jacobson JS, Begg MD, Wang LW, et al. Effects of a 6-month vitamin intervention on DNA damage in heavy smokers. Cancer Epidemiol Biomarkers Prev. 2000;9:1303-1311.

64. AREDS. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001; 119:1439-1452.

65. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. *N Engl J Med*. 2001;345: 1583-1592.

66. Desnuelle C, Dib M, Garrel C, Favier A; ALS riluzoletocopherol Study Group. A double-blind, placebocontrolled randomized clinical trial of alpha-tocopherol

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, February 28, 2007-Vol 297, No. 8 855

(vitamin E) in the treatment of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Other Motor Neuron Disord*, 2001;2:9-18.

67. Stevic Z, Nicolic A, Blagojevic D, et al. A controlled trial of combination of methionine and antioxidants in ALS patients. *Jugoslov Med Biohem*. 2001;20:223-228.

68. You WC, Chang YS, Heinrich J, et al. An intervention trial to inhibit the progression of precancerous gastric lesions: compliance, serum micronutrients and Sallyl cysteine levels, and toxicity. *Eur J Cancer Prev*. 2001; 10:257-263.

69. de Gaetano G; Collaborative Group of the Primary Prevention Project. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. *Lancet*. 2001;357:89-95.

70. de Waart FG, Kok FJ, Smilde TJ, Hijmans A, Wollersheim H, Stalenhoef AF. Effect of glutathione Stransferase M1 genotype on progression of atherosclerosis in lifelong male smokers. *Atherosclerosis*. 2001;158: 227-231.

71. Chylack LT Jr, Brown NP, Bron A, et al. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficacy of an oral antioxidant micronutrient mixture to slow progression of age-related cataract. *Ophthalmic Epidemiol*. 2002;9:49-80.

72. Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. JAMA. 2002;288:715-721.

73. Heart Protection Study. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebocontrolled trial. *Lancet.* 2002;360:23-33.

74. Hodis HN, Mack WJ, LaBree L, et al; VEAPS Research Group. Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS). *Circulation*. 2002; 106:1453-1459.

75. Waters DD, Alderman EL, Hsia J, et al. Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in post-menopausal women: a randomized controlled trial. *JAMA*. 2002;288:2432-2440.

76. White KLM, Chalmers DM, Martin IG, et al. Dietary antioxidants and DNA damage in patients on longterm acid suppression therapy: a randomized controlled study. *Br J Nutr.* 2002;88:265-271.

77. Wluka AE, Stuckey S, Brand C, Cicuttini FM. Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. *J Rheumatol*. 2002:29:2585-2591.

78. Collins EG, Edwin Langbein W, Orebaugh C, et al. PoleStriding exercise and vitamin E for management of peripheral vascular disease. *Med Sci Sports Exerc.* 2003; 35:384-393.

79. Prince MI, Mitchison HC, Ashley D, et al. Oral antioxidant supplementation for fatigue associated with primary biliary cirrhosis: results of a multicentre, randomized, placebo-controlled, cross-over trial. *Aliment Pharmacol Ther.* 2003;17:137-143.

80. Salonen RM, Nyyssonen K, Kaikkonen J, et al. Antioxidant supplementation in atherosclerosis prevention study: six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. *Circulation*. 2003;107:947-953.

81. Sasazuki S, Sasaki S, Tsubono Y, et al. The effect of 5-year vitamin C supplementation on serum pepsinogen level and *Helicobacter pylori* infection. *Cancer Sci.* 2003;94:378-382.

82. Takagi H, Kakizaki S, Sohara N, et al. Pilot clinical trial of the use of alpha-tocopherol for the prevention of hepatocellular carcinoma in patients with liver cirrhosis. Int J Vitam Nutr Res. 2003;73:411-415.

83. Virtamo J, Pietinen P, Huttunen JK, et al; ATBC Study Group. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. *JAMA*. 2003;290:476-485.

84. Allsup SJ, Shenkin A, Gosney MA, et al. Can a short period of micronutrient supplementation in older institutionalized people improve response to influenza vaccine? a randomized, controlled trial. *J Am Geriatr Soc.* 2004;52:20-24.

85. Goodman GE, Thornquist MD, Balmes J, et al. The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. *J Natl Cancer Inst.* 2004;96:1743-1750.

86. Hercberg S, Galan P, Preziosi P, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. *Arch Intern Med.* 2004;164:2335-2342.

87. Manuel-y-Keenoy B, Vinckx M, Vertommen J, Van Gaal L, De Leeuw I. Impact of vitamin E supplementation on lipoprotein peroxidation and composition in type 1 diabetic patients treated with atorvastatin. *Atherosclerosis*. 2004;175:369-376.

 McNeil JJ, Robman L, Tikellis G, Sinclair MI, McCarty CA, Taylor HR. Vitamin E supplementation and cataract: randomized controlled trial. *Ophthalmology*. 2004; 111:75-84.

89. Meydani SN, Leka LS, Fine BC, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. *JAMA*. 2004;292: 828-836.

90. Mezey E, Potter JJ, Rennie-Tankersley L, Caballeria J, Pares A. A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. *J Hepatol*. 2004;40:40-46.

91. Richer S, Stiles W, Statkute L, et al. Doublemasked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). *Optometry*. 2004;75:216-230.

92. Avenell A, Campbell MK, Cook JA, et al. Effect of multivitamin and multimineral supplements on morbidity from infections in older people (MAVIS trial): pragmatic, randomised, double blind, placebo controlled trial. *BMJ*. 2005;331:324-329.

93. Graf M, Ecker D, Horowski R, et al. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled doubleblind study. *J Neural Transm.* 2005;112:649-660.

94. Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. *JAMA*. 2005;294:56-65.

95. Limburg PJ, Wei W, Ahnen DJ, et al. Randomized, placebo-controlled, esophageal squamous cell cancer chemoprevention trial of selenomethionine and celecoxib. *Gastroenterology*. 2005;129:863-873.
96. Lonn E, Bosch J, Yusuf S, et al; HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. *JAMA*. 2005;293:1338-1347.

97. Marras C, McDermott MP, Rochon PA, et al. Parkinson Study Group. Survival in Parkinson disease: thirteen-year follow-up of the DATATOP cohort. *Neurology*. 2005;64:87-93.

98. Mooney LA, Madsen AM, Tang D, et al. Antioxidant vitamin supplementation reduces benzo(a)pyrene-DNA adducts and potential cancer risk in female smokers. *Cancer Epidemiol Biomarkers Prev.* 2005;14:237-242.

99. Petersen RC, Thomas RG, Grundman M, et al; Alzheimer's Disease Cooperative Study Group. Vitamin E

and donepezil for the treatment of mild cognitive impairment. *N Engl J Med*. 2005;352:2379-2388.

100. Tam LS, Li EK, Leung VY, et al. Effects of vitamins C and E on oxidative stress markers and endothelial function in patients with systemic lupus erythematosus: a double blind, placebo controlled pilot study. *J Rheumatol.* 2005;32:275-282.

101. Witte KK, Nikitin NP, Parker AC, et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. *Eur Heart J.* 2005;26:2238-2244.

102. Rayman M, Thompson A, Warren-Perry M, et al. Impact of selenium on mood and quality of life: a randomized, controlled trial [published online September 21, 2005]. *Biol Psychiatry*. 2006;59:147-154.

103. Caraballoso M, Sacristan M, Serra C, Bonfill X. Drugs for preventing lung cancer in healthy people. *Cochrane Database Syst Rev.* 2003;(2):CD002141. doi: 10.1002/14651858.CD002141.

104. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. *Lancet.* 2003;361:2017-2023.

105. Davies AA, Davey Smith G, Harbord R, et al. Nutritional interventions and outcome in patients with cancer or preinvasive lesions: systematic review. *J Natl Cancer Inst.* 2006;98:961-973.

106. Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. *Ann Intern Med.* 2005;142: 37-46.

107. Huang HY, Caballero B, Chang S, et al. The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health state-of-the-science conference. *Ann Intern Med.* 2006; 145:372-385.

108. Gluud LL. Bias in clinical intervention research. *Am J Epidemiol*. 2006;163:493-501.

109. Gluud C. The culture of designing hepato-biliary randomised trials. *J Hepatol*. 2006;44:607-615.

110. Dickersin K, Rennie D. Registering clinical trials. *JAMA*. 2003;290:516-523.

111. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. *Curr Pharm Des.* 2004;10:1677-1694.

112. Kawanishi S, Oikawa S, Murata M. Evaluation for safety of antioxidant chemopreventive agents. *Antioxid Redox Signal*. 2005;7:1728-1739.

113. Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. *Free Radic Biol Med.* 1999; 26:746-761.

114. Maxwell SR. Antioxidant vitamin supplements: update of their potential benefits and possible risks. *Drug Saf.* 1999;21:253-266.

115. Hercberg S, Galan P, Preziosi P, Alfarez MJ, Vazquez C. The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancers. *Nutrition*. 1998; 14:513-520.

116. Panel on Micronutrients: Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. *Institute of Medicine, Food and Nutrition Board: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc.* Washington, DC: National Academy Press; 2000:1-800.

117. Panel on Dietary Antioxidants and Related Compounds: Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of DRIs, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board. *Institute* of Medicine: Dietary Reference Intakes for Vitamin C,

Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academy Press; 2000:1-529.

118. Ritenbaugh C, Streit K, Helfand M. Routine vitamin supplementation to prevent cancer: summary of evidence from randomized controlled trials. http://www .ahrq.gov/clinic/3rduspstf/vitamins/vitasum.htm Accessed December 30, 2006.

119. Atkins D, Shetty P. Update of the evidence from randomized controlled trials, 1999 - 2002. Routine vitamin supplementation to prevent cancer. http://www.ahrq.gov/clinic/3rduspstf/vitamins/vitupdate.htm. Accessed December 30, 2006.

120. McKevith B, Kelly C, Stanner S, Hughes J, Buttriss J. The Food Standards Agency's antioxidants in food programme—a summary. *J Hum Nutr Diet*. 2003;16:257-263.

121. Paolini M, Abdel-Rahman SZ, Sapone A, et al. Betacarotene: a cancer chemopreventive agent or a co-carcinogen? *Mutat Res.* 2003;543:195-200.

122. Lee BM, Park KK. Beneficial and adverse effects of chemopreventive agents. *Mutat Res.* 2003;523-524: 265-278.

123. Brown BG, Crowley J. Is there any hope for vitamin E? JAMA. 2005;293:1387-1390. **124.** Devaraj S, Jialal I. Failure of vitamin E in clinical trials: is gamma-tocopherol the answer? *Nutr Rev.* 2005; 63:290-293.

125. Guallar E, Hanley DF, Miller ER III. Annus horribilis for vitamin E. *Ann Intern Med.* 2005;143:143-145.

126. Duarte TL, Lunec J. When is an antioxidant not an antioxidant? a review of novel actions and reactions of vitamin C. *Free Radic Res.* 2005;39:671-686.

127. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J. Vitamin C exhibits pro-oxidant properties. *Nature*. 1998;392:559.

128. Klein EA, Thompson IM, Lippman SM, et al. SE-LECT: the selenium and vitamin E cancer prevention trial. *Urol Oncol.* 2003;21:59-65.

129. Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. *FASEB J.* 1987;1:441-445.

130. Diplock AT. Antioxidants and disease prevention. *Mol Aspects Med.* 1994;15:293-376.

131. van Poppel G, van den Berg H. Vitamins and cancer. *Cancer Lett.* 1997;114:195-202.

132. Diplock AT, Charleux JL, Crozier-Willi G, et al. Func-

tional food science and defence against reactive oxidative species. *Br J Nutr*. 1998;80(suppl 1):S77-S112.

133. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? *Lancet*. 2000;344:721-724.

134. Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. *J Am Coll Nutr.* 2001;20(suppl):4645-4725.

135. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. *Apoptosis.* 2000;5:415-418.

136. Kimura H, Sawada T, Oshima S, Kozawa K, Ishioka T, Kato M. Toxicity and roles of reactive oxygen species. *Curr Drug Targets Inflamm Allergy*. 2005;4:489-495.

137. Bast A, Haenen GR. The toxicity of antioxidants and their metabolites. *Environ Toxicol Pharmacol*. 2002; 11:251-258.

138. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. *J Control Release*. 2006;113:189-207.

The habit of reading is the only one I know in which there is no alloy. It lasts when all other pleasures fade. It will be there to support you when all other resources are gone. . . . It will make your hours pleasant to you as long as you live. —Anthony Trollope (1815-1882)